Marginal MLEs for the Fay-Herriot random effects model where the covariance matrix for the sampling model is known

mmleFHP(y, X, Sigma)

Arguments

y

direct data following normal model \(y\sim N(\theta,\Sigma)\)

X

linking model predictors \( \theta\sim N(X\beta,\tau^2 I)\)

Sigma

covariance matrix in sampling model

Value

a list of parameter estimates including

  1. beta, the estimated regression coefficients

  2. t2, the estimate of \(\tau^2\)

Author

Peter Hoff

Examples

n<-30 ; p<-3 X<-matrix(rnorm(n*p),n,p) beta<-rnorm(p) theta<-X%*%beta + rnorm(n) Sigma<-diag(n) y<-theta+rnorm(n) mmleFHP(y,X,Sigma)
#> $beta #> Xd1 Xd2 Xd3 #> -0.5169015 0.4703897 -0.9970674 #> #> $t2 #> [1] 0.6564275 #>