mmleFH.Rd
Marginal MLEs for the Fay-Herriot random effects model where the covariance matrix for the sampling model is known to scale.
mmleFH(y, X, V, ss0 = 0, df0 = 0)
y | direct data following normal model \(y\sim N(\theta,V\sigma^2)\) |
---|---|
X | linking model predictors \( \theta\sim N(X\beta,\tau^2 I)\) |
V | covariance matrix to scale |
ss0 | prior sum of squares for estimate of \(\sigma^2\) |
df0 | prior degrees of freedom for estimate of \(\sigma^2\) |
a list of parameter estimates including
beta, the estimated regression coefficients
t2, the estimate of \(\tau^2\)
s2, the estimate of \(\sigma^2\)
Peter Hoff
n<-30 ; p<-3 X<-matrix(rnorm(n*p),n,p) beta<-rnorm(p) theta<-X%*%beta + rnorm(n) V<-diag(n) y<-theta+rnorm(n) mmleFH(y,X,V)#> $beta #> Xd1 Xd2 Xd3 #> -0.4974420 0.7214477 0.1429494 #> #> $t2 #> [1] 0.9667798 #> #> $s2 #> [1] 1.169488 #>