asymptotic FAB p-values and confidence intervals for parameters in generalized linear regression models

glmFAB(cformula, FABvars, lformula = NULL, alpha = 0.05, silent = FALSE, ...)

Arguments

cformula

formula for the control variables

FABvars

matrix of regressors for which to make FAB p-values and CIs

lformula

formula for the linking model (just specify right-hand side)

alpha

error rate for CIs (1-alpha CIs will be constructed)

silent

show progress (TRUE) or not (FALSE)

...

additional arguments to be passed to glm

Value

an object of the class glmFAB which inherits from glm

Author

Peter Hoff

Examples

# n observations, p FAB variables, q=2 control variables n<-100 ; p<-25 # X is design matrix for params of interest # beta is vector of true parameter values # v a variable in the linking model - used to share info across betas v<-rnorm(p) ; beta<-(2 - 2*v + rnorm(p))/3 ; X<-matrix(rnorm(n*p),n,p)/8 # control coefficients and variables alpha1<-.5 ; alpha2<- -.5 w1<-rnorm(n)/8 w2<-rnorm(n)/8 # simulate data lp<-1 + alpha1*w1 + alpha2*w2 + X%*%beta y<-rpois(n,exp(lp)) # fit model fit<-glmFAB(y~w1+w2,X,~v,family=poisson)
#> #> Fitting sampling model: - Fitting sampling model: # #> Fitting linking models: #------------------------ Fitting linking models: ##----------------------- Fitting linking models: ###---------------------- Fitting linking models: ####--------------------- Fitting linking models: #####-------------------- Fitting linking models: ######------------------- Fitting linking models: #######------------------ Fitting linking models: ########----------------- Fitting linking models: #########---------------- Fitting linking models: ##########--------------- Fitting linking models: ###########-------------- Fitting linking models: ############------------- Fitting linking models: #############------------ Fitting linking models: ##############----------- Fitting linking models: ###############---------- Fitting linking models: ################--------- Fitting linking models: #################-------- Fitting linking models: ##################------- Fitting linking models: ###################------ Fitting linking models: ####################----- Fitting linking models: #####################---- Fitting linking models: ######################--- Fitting linking models: #######################-- Fitting linking models: ########################- Fitting linking models: #########################
fit$FABpv
#> fv1 fv2 fv3 fv4 fv5 fv6 #> 1.300889e-01 8.510969e-01 2.726806e-02 3.492731e-03 4.061462e-01 1.948210e-01 #> fv7 fv8 fv9 fv10 fv11 fv12 #> 1.003337e-01 6.237990e-02 3.583927e-01 2.006993e-02 6.817413e-03 5.811456e-03 #> fv13 fv14 fv15 fv16 fv17 fv18 #> 2.904021e-03 9.425581e-02 1.341878e-01 2.477859e-02 5.061479e-02 8.149597e-03 #> fv19 fv20 fv21 fv22 fv23 fv24 #> 8.511975e-02 5.629506e-06 9.202411e-01 9.219267e-01 4.806814e-04 7.321544e-01 #> fv25 #> 2.441232e-02
fit$FABci
#> [,1] [,2] #> fv1 -0.344509499 1.8393237 #> fv2 -1.260577103 0.5006811 #> fv3 -2.042913896 -0.1585499 #> fv4 0.607599233 2.5067503 #> fv5 -0.962540473 1.2900883 #> fv6 -0.583689620 1.9673802 #> fv7 -0.221374101 1.7722294 #> fv8 -0.068943095 1.9953430 #> fv9 -0.812490173 1.2792500 #> fv10 0.271652644 2.4657495 #> fv11 0.340385794 2.1362770 #> fv12 0.396405482 2.3187286 #> fv13 0.774606791 3.0633649 #> fv14 -0.186042653 1.7507563 #> fv15 -1.967512806 0.3847793 #> fv16 0.211287525 2.3917946 #> fv17 -0.003559159 1.9305893 #> fv18 0.379208258 2.0351567 #> fv19 -0.186461981 2.0561664 #> fv20 1.536612983 4.0508068 #> fv21 -1.385328449 0.6096532 #> fv22 -1.816307227 0.5644109 #> fv23 0.565590160 2.9048210 #> fv24 -0.702040787 1.3685552 #> fv25 0.177403845 1.9724540
summary(fit) # look at p-value column
#> #> Call: #> glm(formula = y ~ . + 0, family = ..1, data = as.data.frame(cbind(W, #> X))) #> #> Deviance Residuals: #> Min 1Q Median 3Q Max #> -1.97503 -0.75277 -0.00544 0.46538 2.57513 #> #> Coefficients: #> Estimate Std. Error z value Pr(>|z+bfab|) #> `(Intercept)` 0.87195 0.08187 10.651 < 2e-16 *** #> w1 -0.64159 0.60890 -1.054 0.292026 #> w2 -0.03471 0.58291 -0.060 0.952512 #> fv1 0.74741 0.66379 1.126 0.130089 #> fv2 -0.39186 0.52810 -0.742 0.851097 #> fv3 -1.10097 0.57266 -1.923 0.027268 * #> fv4 1.55717 0.57726 2.698 0.003493 ** #> fv5 0.16377 0.68470 0.239 0.406146 #> fv6 0.63989 0.74383 0.860 0.194821 #> fv7 0.77543 0.60597 1.280 0.100334 #> fv8 0.96320 0.62745 1.535 0.062380 . #> fv9 0.23338 0.63580 0.367 0.358393 #> fv10 1.36870 0.66691 2.052 0.020070 * #> fv11 1.28162 0.51956 2.467 0.006817 ** #> fv12 1.40368 0.55627 2.523 0.005811 ** #> fv13 1.91899 0.69568 2.758 0.002904 ** #> fv14 0.78236 0.58870 1.329 0.094256 . #> fv15 -0.79141 0.71502 -1.107 0.134188 #> fv16 1.30154 0.66278 1.964 0.024779 * #> fv17 0.96352 0.58790 1.639 0.050615 . #> fv18 1.20796 0.50287 2.402 0.008150 ** #> fv19 0.93485 0.68166 1.371 0.085120 . #> fv20 2.94693 0.67106 4.391 5.63e-06 *** #> fv21 -0.38784 0.60639 -0.640 0.920241 #> fv22 -0.84071 0.59312 -1.417 0.921927 #> fv23 1.93883 0.58724 3.302 0.000481 *** #> fv24 0.33326 0.62937 0.530 0.732154 #> fv25 1.07493 0.54562 1.970 0.024412 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> (Dispersion parameter for poisson family taken to be 1) #> #> Null deviance: 443.323 on 100 degrees of freedom #> Residual deviance: 81.014 on 72 degrees of freedom #> AIC: 385.28 #> #> Number of Fisher Scoring iterations: 5 #>